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ABSTRACT

Quasi-periodic pulsations (QPP) are often detected in solar and stellar flare lightcurves. These events

may contain valuable information about the underlying fundamental plasma dynamics as they are not

described by the standard flare model. The detection of QPP signals in flare lightcurves is hindered

by their intrinsically non-stationary nature, contamination by noise, and the continuously increasing

amount of flare observations. Hence, the creation of automated techniques for QPP detection is

imperative. We implemented the Fully Convolution Network (FCN) architecture to classify the flare

lightcurves whether they have exponentially decaying harmonic QPP or not. To train the FCN, 90,000

synthetic flare lightcurves with and without QPP were generated. After training, it showed an accuracy

of 87.2% on the synthetic test data and did not experience overfitting. To test the FCN performance

on real data, we used the subset of stellar flare lightcurves observed by Kepler, with strong evidence of

decaying QPP identified hitherto with other methods. Then, the FCN was applied to find QPPs in a

larger-scale Kepler flare catalogue comprised of 2274 events, resulting in a 7% QPP detection rate with

a probability above 95%. The FCN, implemented in Python, is accessible through a browser application

with a user-friendly graphical interface and detailed installation and usage guide. The obtained results

demonstrate that the developed FCN performs well and successfully detects exponentially decaying

harmonic QPP in real flare data, and can be used as a tool for preliminary sifting of the QPP events

of this type in future large-scale observational surveys.
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1. INTRODUCTION

Solar flares, together with coronal mass ejections, are the most powerful physical processes in the solar system (e.g.,

Benz 2017). Understanding the physical processes which cause the impulsive releases of the magnetic energy in the

solar atmosphere are among the key challenges of modern solar physics. Furthermore, there is a growing interest in

similar phenomena detected on other stars, including the sun-like stars with potentially habitable planetary systems.

The so-called standard model of a solar flare attributes the energy release to the process of magnetic reconnection

(e.g., Shibata & Magara 2011).

An intensively studied phenomenon which is not described by the standard flare model are quasi-periodic pulsations

(QPP) of the flaring emission (e.g., Nakariakov & Melnikov 2009; Nakariakov et al. 2010; Zimovets et al. 2021). QPP

appear as the quasi-periodic modulation of the flaring emission in all observational bands, from radio to gamma-rays,

in both thermal and non-thermal emission, and in flares of all classes, from microflares (e.g., Nakariakov et al. 2018)

to the most-power flare classes (e.g., Kolotkov et al. 2018). Typical periods of QPP range from a fraction of a second

to several minutes. Simões et al. (2015) demonstrated that about 80% of X-class solar flares display QPP in the soft

X-ray emission. Furthermore, Hayes et al. (2020) found out that approximately 46% of X-class, 29% of M-class, and

7% of C-class flares show evidence of stationary, i.e., narrowband QPP. Those estimations are highly sensitive to the
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detection criterion, i.e., upon the definition of a QPP. One of the complications is the essentially non-stationary nature

of QPP (Nakariakov et al. 2019a; Pascoe et al. 2020; Mehta et al. 2023). The QPP patterns may have pronounced

amplitude and/or instantaneous oscillation period modulation, and also the signal shape may be highly anharmonic.

It means that the oscillation energy is intrinsically distributed over several Fourier frequencies, making the detection

techniques based on the Fourier transform not very relevant (e.g., Anfinogentov et al. 2022).

Zimovets et al. (2021) identified at least fifteen mechanisms which could be responsible for the appearance of QPP.

These mechanisms include the modulation of the magnetic reconnection rate or parameters of the emitting plasma by

magnetohydrodynamic (MHD) waves, and self-induced repetitive reconnection (McLaughlin et al. 2018). As different

mechanisms produce QPP with different properties, such as oscillation periods, signal shapes, modulation, etc., one

would expect the existence of several different classes of QPP. However, the task of the QPP taxonomy remains an

outstanding problem. Obviously, the detection technique must be fine-tuned for the detection of QPP of a specific

class. Similarly, the search for statistical relationships among different observables should be conducted within a

specific QPP class.

One of the clearly identified class are QPP of co-called SUMER oscillations, named after the instrument used in the

first detection of this oscillatory phenomenon (e.g., Wang 2011; Wang et al. 2021). In spectral observations, SUMER

oscillations appear as periodic alternate Doppler shift of a coronal emission line. The oscillation pattern is highly

harmonic. A typical period of the SUMER oscillations is about several minutes. The oscillation decays very rapidly,

with the exponential damping time being comparable to the oscillation period. SUMER oscillations are interpreted as

standing slow magnetoacoustic waves in a coronal loop. A related phenomenon are sloshing oscillations, characterised

by a slow magnetoacoustic wave bouncing between footpoints of the loop (e.g., Reale et al. 2019). QPP of the SUMER

class appear in the decay phase of a flare as, e.g., the modulation of the intensity of the soft X-ray radiation, EUV

radiation associated with hot plasma, and radio (e.g., Kim et al. 2012). Similar QPP are detected in the soft X-ray

radiation produced by stellar flares. The linear scaling of the damping time with the oscillation period has been

established in both solar and stellar flares (Cho et al. 2016). Furthermore, similar QPP are detected in the white light

emission produced by stellar flares (e.g., Pugh et al. 2016; Bai et al. 2023).

The search for QPP in solar flares is complicated by a large number of events, which is typically about 10,000 of C-,

M-, and X-class flares during an eleven-year cycle, and much more lower-power flares. On the other hand, the large

number of events allows for the statistical validation and comparison of various theories, and also creates a ground for

the application of machine learning (ML) techniques. ML techniques have been intensively applied to various tasks

of modern solar physics for several years. It includes applications to space weather forecasting, including solar flares

(e.g., Ahmed et al. 2013; Bobra & Couvidat 2015; Nishizuka et al. 2018; Camporeale 2019) and coronal mass ejections

(e.g., Wang et al. 2019; Georgoulis et al. 2021), and predictors of the geomagnetic activities (e.g., Valach et al. 2009);

identification of morphological features in prominences, and their relationship with solar activity (e.g., Zhang et al.

2024); image super-resolution techniques (e.g., Xu et al. 2024); recognition of coronal loops (e.g., Wang et al. 2024);

inferring transverse velocities at the solar surface (e.g., Tilipman et al. 2023); extrapolation of solar global magnetic

fields(e.g., Jeong et al. 2020); and may others. Machine learning techniques have also been applied to the detection

of stellar flares in photometric surveys (e.g., Vida & Roettenbacher 2018), see also Fluke & Jacobs (2020), and the

search for quasi-periodic eruptions in the X-ray emission from the nuclei of galaxies (e.g., Webbe & Young 2023).

Thus, the application of an ML approach may significantly advance the QPP study too. Promising research avenues

are, for example, an ML-based identification of QPP classes, and the application of a pattern-recognition approach to

the QPP detection.

The aim of this paper is to develop and test an ML technique for the detection of QPP patterns of the SUMER

class, i.e., rapidly-decaying highly harmonic oscillatory patterns in lightcurves, and provide the research community

with an open access software package implementing this technique. The paper is organised as follows. In Section 2

we describe the synthetic data which are used for training a neural network. Section 3 describes the neural network

architecture together with its performance on the synthetic data. In Section 4, we apply the developed neural network

to real flare lightcurves. Then, Section 5 contains the information about the browser application to use the network.

Finally, Section 6 concludes the results and outlines the possible next steps to develop the approach presented in this

paper.

2. SYNTHETIC DATA CREATION
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Usually, a large amount of data is required for training and validating deep learning (DL) models. For our problem,

the dataset should contain at least several thousands of lightcurves with and without QPP. Moreover, in training, we

need to provide the network with a so-called ground truth knowledge, i.e., a definitive answer as to whether the given

flare lightcurve contains a QPP signal or not, which is not always available in the existing flare catalogues. For this

reason, we construct an extensive synthetic dataset of flare lightcurves and rely on it for training and validating our

network. To generate the synthetic dataset, we follow the procedure similar to that presented in Broomhall et al.

(2019), which is briefly outlined below.

Our synthetic flare lightcurves have the following general form,

I (t) = F (t) +Q (t) +N (t) . (1)

Here, F(t) is the flare profile with the peak amplitude Aflare, generated using one of the three flare shape models

proposed hitherto,

F1(t) = Aflare
G(t)

Max (G (t))
, (2)

G (t) = exp

[
D (B − t) +

C2D2

4

] [
erf (Z)− erf

(
Z − t

C

)]
,

Z =
(
2B + C2D

)
/2C,

based on the convolution of the Gaussian energy deposition and exponential energy dissipation with B, C, D being

free parameters (Gryciuk et al. 2017),

F2(t) =


Aflare exp

(
− t2

2σrise

)
, t < 0

Aflare exp

(
− t2

2σdecay

)
, t ≥ 0

(3)

which is a guessed flare profile approximated by two half-Gaussian curves of different widths σrise and σdecay (Broomhall

et al. 2019), and

F3(t) =


Aflare

(
1 + 1.941t− 0.175t2 − 2.246t3 − 1.125t4

)
, −1 ≤ t < 0

0.948Aflare exp (−0.965t) , 0 ≤ t < 1.6

0.322Aflare exp (−0.290t) , 1.6 ≤ t ≤ 19

(4)

derived as an empirical template of a stellar flare in Kepler observations (Davenport et al. 2014). Then, the flare

duration is scaled from its initial value of 20 to the new length Lflare and the flare peak is shifted to the right by a

value determined by the “shift” parameter (see Table 1). As a final step, the constant offset value is added to the flare.

For the QPP signal Q(t) in Eq. (1), in this work we focus on a particular type of rapidly decaying harmonic QPP

events in the flare decay phase, proposed by Nakariakov et al. (2019a) and which can be associated with the dynamics

of standing slow magnetoacoustic waves, also known as SUMER oscillations, in a flaring loop (e.g., Wang et al. 2021;

Nakariakov et al. 2019b),

Q (t) = Aqpp exp

(
− t

τ

)
cos

(
2πt

P
+ ϕ

)
. (5)

In Eq. (5), Aqpp is the QPP amplitude; P , τ , and ϕ stand for the QPP period, decay time, and phase, respectively.

The QPP start time tstart is chosen to be about the time of the flare peak tpeak, but not exactly coinciding with it

(see the parameter tstart − tpeak in Table 1). Next, the noise component N (t) is introduced into the lightcurve, which

is modelled as either white noise, red noise, or a combination of both types of noise. The red noise component is

generated as

Ni = rNi−1 +
√
(1− r2)wi, (6)

where Ni is the red noise value at the i-th instant of time, obtained from a white-noise component wi, with the

correlation coefficient between successive data points, r. The white-noise component wi is generated from a Gaussian

distribution with zero mean and a standard deviation scaled relatively to the flare amplitude.
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Table 1. Parameters of synthetic dataset.

Parameters Gryciuk F1(t) Two half-Gaussians F2(t) Davenport F3(t)

Lflare U (50, 300) U (50, 300) U (50, 300)

shift U (0, 300− Lflare) U (0, 300− Lflare) U (0, 300− Lflare)

Aflare 10 +N (0, 2) 10 +N (0, 2) 10 +N (0, 2)

σrise n/a U (1, 3) n/a

σdecay n/a U (5, 20) n/a

B U (0, 5) n/a n/a

C U (1, 5) n/a n/a

D U (0.5, 1) n/a n/a

offset U (0, 100) U (0, 100) U (0, 100)

Aqpp/Aflare U (0.05, 0.5) U (0.05, 0.5) U (0.05, 0.5)

Lflare/P U (5, 15) U (5, 15) U (5, 15)

τ/P U (1, 5) U (1, 5) U (1, 5)

ϕ U (0, 2π) U (0, 2π) U (0, 2π)

tstart − tpeak U (−0.05Lflare, 0.1Lflare) U (−0.05Lflare, 0.1Lflare) U (−0.05Lflare, 0.1Lflare)

White S/N U (1, 5) U (1, 5) U (1, 5)

Red S/N U (1, 5) U (1, 5) U (1, 5)

r U (0.81, 0.99) U (0.81, 0.99) U (0.81, 0.99)

To train the ML model, we created 90,000 synthetic flare lightcurves using Eqs. (1)–(6), in which 50% of lighcurves

have QPP and the other 50% of lighcurves do not (the QPP amplitude Aqpp set to zero). Each synthetic flare

lightcurve contains 300 data points. In our dataset, we use nine combinations of the above-mentioned flare shapes

F1,2,3(t) and white/red/white+red noise N (t). The synthetic flare, QPP and noise parameters we used for the creation

of our dataset are summarised in Table 1, where U (a, b) stands for a random value uniformly distributed between a

and b, and N (µ, σ) denotes a random value normally distributed with a mean µ and a standard deviation σ. The

examples of the flare lightcurves with QPP, generated as described above, are shown in Fig. 1, for all three flare profile

models F1,2,3(t). The left panel of Fig. 2 shows 2400 randomly selected synthetic flare lightcurves plotted together,

for illustration of the general shape of our dataset. To create this plot, the peaks of the selected lightcurves were

positioned at one-third of the time domain and then scaled to unity.

To finalise our synthetic dataset, the created flare signals were randomly shuffled and split into train, test and

validation subsets in a proportion of 80%, 10% and 10%, respectively. The synthetic dataset can be accessed online

via Harvard Dataverse repository1, where one can find all necessary source and data files and description.

3. NEURAL NETWORK ARCHITECTURE AND PERFORMANCE

In this work, we use the Fully Convolutional Network (FCN) architecture proposed by Wang et al. (2017) for a

time series classification task. Our PyTorch Lightning implementation is based on the TensorFlow implementation

from Ismail Fawaz et al. (2019). The FCN architecture is shown in Fig. 3 and consists of 3 consequent blocks of 1D

convolution, batch normalization and Rectified Linear Unit (ReLu) activation function followed by 1D average pooling,

one fully connected layer and a sigmoid activation function. As a result, an input times series is transformed into a

QPP probability estimation PQPP ranging from 0 to 1. It is usually assumed that if this probability exceeds 0.5 than

the ML model finds a positive class.

To increase the FCN performance and capability to learn from the data, we added one additional channel to the

input data. This channel is produced by detrending the original flare time series. The algorithm of making this channel

is as follows:

1. A position of a flare peak is found;

1 doi.org/10.7910/DVN/UNRTN6

doi.org/10.7910/DVN/UNRTN6
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Figure 1. Examples of synthetic lightcurves given by flare models Eq. (2), left, Eq. (3), middle, and Eq. (4), right. The top
row: the initial flare profiles. The middle row: the initial flare profiles with added QPP (red curve), see Eq. (5). The bottom
row: the same as in middle row but with added red and white noise (purple dashed curve), see Eq. (6).

2. The flare is separated into the rise phase (before the flare peak) and decay phase (after the flare peak);

3. The decay and rise phase signals are smoothed by the Savitzky–Golay filter of the 4th order and a window width

equal to the half-length of the input signal (separately for the rise and decay signals) to produce corresponding

trends. For the illustration of smoothing, see the blue dash-dotted (decay phase) and black dashed (rise phase)

curves in the left panel of Fig. 4;

4. For the decay phase, the obtained trend is subtracted from the original signal to enhance the visibility of QPP

(see the blue curve on the right panel of Fig. 4);

5. For the rise phase, the detrended signal is also obtained, and its standard deviation σ is calculated. Then, the

whole rise phase is padded with white noise produced with U (−σ, σ) (see the black curve on the right panel of

Fig. 4).

We found that adding the second channel improves the accuracy of the classification by about 5% on our synthetic

dataset by highlighting the QPP features hidden by the trend (i.e. small amplitudes, long periodicities, etc.). It

should be mentioned that, in general, this channel is sensitive to the choice of the Savitzky–Golay filter’s order and

window width (see e.g. the dedicated discussion of this issue in Sec. 4.2 of Kupriyanova et al. 2020). Our choice

of these parameters allows for obtaining a smooth trend following slow (in comparison with QPP) changes in the
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Figure 2. Simultaneous plot of 2400 aligned and min-max scaled light curves from the synthetic dataset (left panel) and
min-max scaled light curves from stellar flare catalogue, observed with Kepler (Balona 2015).

lightcurve. Moreover, every window filter suffers from the edge effects which were mitigated by interpolating the

edges by a polynomial function (the default ‘interp’ mode in the ‘savgol filter’ function in the SciPy Python package).

Nevertheless, the detrended time series is used as an additional complementary channel (in addition to the original

time series) in this work, allowing the network to catch the time series properties which may be less pronounced in the

original signal. The latter, complementary use of the detrended signal lets us ease the restrictions of the detrending

and subjectivity in the choice of the filter’s parameters.

Thus, the input data for the FCN consists of two channels. The first channel is the original flare lightcurve (e.g.,

the left panel of Fig. 4), and the second channel is the flare lightcurve detrended as described above (e.g., the right

panel of Fig. 4). Before feeding into the network, channels in a data sample are standardised independently:

Îj
c,i =

(
Ij
c,i −MIj

c

)
/σIj

c , (7)

where Ij
c,i is the c-th data channel of the j-th data sample at the i-th time count, and MIj

c and σIj
c are mean and

standard deviation of the time series Ij
c,i.

The FCN has been trained with 64 sample batches on the train dataset using Adam optimizer (Kingma & Ba 2014)

with learning rate of 0.001. The training progress has been tracked using the validation dataset. The early stopping

has been used to stop the training process in the validation loss minimum. Figure 5 shows the dynamics of the loss

and accuracy score calculated for the train and validation datasets during the training. It can be seen that the train

and validation curves are close to each other, indicating that the FCN has generalized well to new (unseen) data and

has not overfitted. Then, the FCN performance has been estimated using the test dataset. The test confusion matrices

for different threshold values are shown in Fig. 6. For the 0.5 threshold, the FCN accuracy is 87.2% while precision

is 93.6% (the ratio between the number of true positive answers and a number of all positive answers given by the

FCN). For higher thresholds, accuracy decreases (but remains acceptable) with a simultaneous decrease in the number

of false positives making the FCN more conservative.

Thus, we can conclude that the FCN performs well on the synthetic dataset and does not experience overfitting

after the training. It indicates the capability of the FCN to generalise the data unseen during the training and makes

it potentially applicable to the lightcurves where similar data patterns exist.

4. REAL DATA EXAMPLES

In this section, we demonstrate the application of our FCN to the existing real data QPP catalogues, observed in

solar flares (the Automated Flare Inference of Oscillations (AFINO) catalogue2, Inglis et al. 2015, 2016, using GOES

soft X-ray data) and in stellar flares (Balona 2015; Pugh et al. 2016, with Kepler in white light).

2 aringlis.github.io/AFINO

aringlis.github.io/AFINO
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Figure 3. Architecture of the FCN for a QPP detection task.
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Figure 5. Left panel: the dynamics of the loss function during the training process for the train (red curve) and validation
(blue dashed curve) datasets. Right panel: the dynamics of the accuracy score on the train (red curve) and validation (blue
dashed curve) datasets during the training process.

4.1. AFINO data

To create the AFINO catalogue, the Fourier Power Spectral Density (PSD) was calculated for each observed flare

time series. Then, the obtained PSD was fitted by three PSD models independently. These models are a single power-

law plus a constant (model S0), a single power-law plus a constant and a localized enhancement associated with a QPP

signature (model S1), and a broken-power law plus a constant (model S2). For each model, the Bayesian Information

Criterion was calculated and the most significant model was chosen.

In our study, we target the rapidly decaying QPP events with periods longer than one minute (motivated by typical

observed behaviour of QPP associated with SUMER oscillations in solar and stellar flares, see e.g., Cho et al. 2016).

In contrast, in the AFINO catalogue, the mean period of QPP events is about 38 s, and only 79 out of 854 events have

periods longer than one minute. Moreover, the QPP events in the AFINO catalogue are sufficiently long-lived, which is

required by the PSD-based detection method. Thus, to look at the most relevant AFINO data, we chose 30 examples

from this sub-set of 79 longer-period QPP events, 15 of which have strong preference for model S1 over models S0 and

S2 (i.e., QPP detection with high confidence), and the other 15 events have strong preference for model S0 over model
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Figure 6. Confusion matrices build using the synthetic test dataset for 0.35, 0.5, 0.65, 0.75, 0.85, and 0.95 QPP-detection
threshold values.

S1 and model S2 over model S1 (i.e., no QPP). The lightcurves of the selected flare events were downloaded from the

GOES data archive, using GOES SSWIDL software3.

For the considered sub-set of AFINO data, our FCN was unable to find any QPPs except one event. This is an

expected result because of the above differences between the QPP properties in the AFINO catalogue and in our

synthetic dataset. AFINO QPPs are weakly decaying which follows from the imposed PSD model (model S1). This

makes it a different QPP type not coinciding with the QPP type considered in our study (long-period and rapidly

decaying). In addition, our analysis showed that the QPP amplitudes in the AFINO catalogue are much smaller than

those in our synthetic dataset, and AFINO QPPs appear across all flare phases, not only in the decay phase as we

assumed in this work.

Thus, the developed FCN cannot be used for AFINO-type QPPs for the reasons mentioned above. However, this

may be fixed in future by expanding the synthetic dataset used for the FCN training, to account for the QPP properties

from the AFINO catalogue.

4.2. Kepler data

3 https://hesperia.gsfc.nasa.gov/goes/goes.html

https://hesperia.gsfc.nasa.gov/goes/goes.html
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Table 2. The fraction of QPP found with the FCN in the Kepler stellar flare catalogue (Balona 2015) for different threshold
values. A total of 2274 stellar flares were considered.

Threshold 0.35 0.5 0.65 0.75 0.85 0.95 0.99

QPP fraction, % 29.2 23.4 18.4 15.0 11.8 7.0 3.8

In contrast to the AFINO data, QPPs found in white-light stellar flares look similar to our dataset, even visually.

To examine the performance of our FCN on this type of data, we used the set of 11 QPP events found by Pugh et al.

(2016) in Kepler data with 1-min cadence by using the wavelet power spectrum of autocorrelation function, which

show the stable decaying pattern. Figure 7 shows 7 out of 11 flare lightcurves from (Pugh et al. 2016) where the FCN

found QPP, together with the QPP detection probability, PQPP. The lightcurves where the FCN did not find QPP

are presented in Fig. 8. This discrepancy with the results of (Pugh et al. 2016) seems natural. Indeed, comparing the

lightcurves in Figs. 7 and 8, one may notice that the oscillatory patterns are more obvious (even visually) in Fig. 7. In

contrast, the lightcurves in Fig. 8 where the FCN was not able to detect QPP in comparison with Pugh et al. (2016)

seem to be more noisy and to have smaller relative amplitudes of possible QPP.

The FCN performance on QPPs found by Pugh et al. (2016) demonstrates that the FCN is able to detect QPPs

in real lightcurves and can be used as a data sieve to detect, at least, the most obvious QPPs events. To proceed

with this conclusion, we took the data from the stellar flare catalogue (Balona 2015) describing 3140 stellar flares

observed with Kepler. The short cadence flare light curves were downloaded by their KIC and flare peak time from

the flare catalogue using Lightkurve python library (Lightkurve Collaboration et al. 2018). Before using this data as

the FCN input, we detrended the lightcurves using a parabolic fit, to get rid of the star rotation effect (see Fig. 9).

In this fitting procedure, the second third of the time series where the flares are usually present was masked out so

that the fit mainly captures the slowly-varying background trend. Next, we examined how well this slowly-varying

trend best-fits the data using the χ2-criterion, calculated at the first and last thirds of the time series. The left panel

of Fig. 9 shows the histogram of the obtained χ2 values. Using it, we empirically set our χ2 threshold to 20, which

accounts for most of the flare events and filters out the outliers. After filtering the lightcurves with χ2 > 20 and

removing their slowly-varying background trends (see the middle and right panels of Fig. 9), we selected only flares

with peaks exceeding the mean background flux value by 3 standard deviations, that gave us a final set of 2274 flare

lightcurves to process with our FCN. The right panel of Fig. 2 demonstrates all these selected flare lightcurves plotted

together after their min-max normalisation. It may be noted that we had to remove this slowly-varying background

trend because it was not included in our synthetic lightcurves to train the network. However, in future studies, it can

be added to the training dataset to avoid the need for detrending.

The obtained Kepler lightcurves were used as the FCN input to find QPPs. Table 2 presents the fraction of

the lightcurves in which the FCN detected QPPs, for different QPP detection threshold values. For example, for

PQPP > 0.5 the fraction of Kepler flares with QPPs is found to be about 23%. However, for a more conservative

PQPP > 0.95 threshold, the QPP detection rate is about 7% which is comparable to the recent result of QPP detection

in TESS flares (Ramsay et al. 2021) and is approximately factor of two higher than the previous estimation of the

QPP detection rate in Kepler flares (Pugh et al. 2016; Balona 2015). Furthermore, these 7% detection rate of QPP

in stellar white light flares seem to be very similar to the statistics of QPP in weak solar C-class flares (Hayes et al.

2020). Thus, we consider the performance of our FCN in this case very reasonable. For all the lightcurves where the

FCN found QPP with PQPP > 0.95 threshold (159 events in total), the star’s KIC identifier and the BJD time of flare

peak are summaries in Table 3 in Appendix A. This data may be used for a more detailed analysis of QPP, including

with other methods, in future.

5. FCN INSTALLATION GUIDE AND USAGE EXAMPLE

The synthetic dataset used in this study and the source files for the developed FCN are available in open access

via a GitHub repository4 and a Harvard Dataverse dataset. The GitHub repository includes two Jupyter notebooks

in Notebooks folder (one for synthetic dataset generation and one for the FCN training) and an easy to install and

user-friendly Streamlit browser application, created by us for running the developed FCN. To use this application,

4 github.com/BelovSA/QPP-Detection

github.com/BelovSA/QPP-Detection
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Figure 7. Stellar flare lightcurves with QPP from (Pugh et al. 2016) where the FCN also found QPP.

one should implement the following commands (written in Unix format, assuming Anaconda/Miniconda distribution

v.24.1.2 or later has been pre-installed):

1. Clone or copy the project repository from GitHub.

2. In terminal, change your working directory to the root directory of the project:

cd QPP-Detection (or cd QPP-Detection-main).

3. Create new Anaconda environment (can take several minutes):

conda env create -f ./Environment/env.yml
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Figure 8. Stellar flare lightcurves with QPP from (Pugh et al. 2016) where the FCN did not find and QPP.
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Figure 9. Left panel: the histogram of the χ2-criterion characterising how good the slowly-varying background flare trend is
fitted by a parabolic function, for stellar flare catalogue of Balona (2015) based on the white-light Kepler data. Middle panel:
a flare light curve and its parabolic trend. Right panel: a flare light curve with the parabolic trend removed.

4. Activate the environment created:

conda activate qpp_detection

5. Run the application5:

streamlit run ./Application/app.py

5 In case of trouble, the update of streamlit and PyTorch-lightning libraries may require:
conda update <library name>
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6. If the steps above are successful you can open the application (if it is not opened automatically) in your browser

by the url:

http://localhost:8501 (or a similar one specified in terminal after running the previous command)

7. Use the graphical interface to detect QPP. The input should be .csv files with the lightcurve data in the column

named ‘flux’ (other columns, if any, are ignored). The example lightcurves taken from (Pugh et al. 2016) and

shown in Fig. 7 and Fig. 8 can be found in the “Test data” folder in the project directory.

Steps 1–3 should be done once to install the application, while steps 1 and 4–7 should be executed each time. The

next subsection illustrates the use-case for the application. For the Windows computers, steps 1–7 should be done via

Anaconda Prompt, not Windows shell.

Once steps 4–6 are done, the user should see the following window in a browser as shown in Fig. 10. This window

initially consists of the search bar, where the folder with the data may be dragged and dropped, and the detect button.

After clicking that button, the FCN processes the data and produces the output table containing the QPP probabilities

and visualisations of the input flare profiles. Finally, the results may be downloaded by clicking the “Download data

as CSV” button for further analysis.

6. CONCLUSIONS AND PROSPECTS

In this study we applied the FCN architecture proposed by Wang et al. (2017) to detect QPPs in light curves of solar

and stellar flares. For this purpose, we generated 90,000 synthetic lightcurves using the flare models by Davenport

et al. (2014), Gryciuk et al. (2017), and a guessed flare model made by two half-Gaussians (Broomhall et al. 2019).

Then, decaying QPPs were added to the decay phase of 50% of the lightcurves generated. Also, noise (white, red or

both) was added to all the lightcurves. The obtained dataset was divided into train, validation and test datasets.

To train the FCN, we used two input channels: an original lightcurve and a detrended lightcurve with a rise phase

padded by white noise. After training, the FCN showed an accuracy of 87.2% on the test data with a precision score of

93.6%. The change of the detection threshold from 0.5 to 0.95 led to a decrease in a number of false positive detections,

as well as, to a decrease in the accuracy score making the FCN more conservative.

After testing the FCN performance on the synthetic data, we applied the FCN to real data examples. For the 30

selected samples from the AFINO catalogue (Inglis et al. 2015, 2016) 50% of which contain QPP and 50% do not,

the FCN was able to find only one QPP. The reason for this is that the type of QPP in the AFINO catalogue is

apparently different from that in our training dataset. To test the FCN on data similar to the training data, we used

11 lightcurves of stellar flares with strong evidence of decaying QPP presence found by Pugh et al. (2016) in Kepler

observations. For this set, the FCN detected QPPs in 7 out of 11 flares. The remaining 4 lightcurves had either noisy

profiles or small QPP amplitudes.

To proceed with Kepler data, we used the information about 3140 lightcurves from the stellar flare catalogue created

by Balona (2015). We detrended these lightcurves using a slowly-varying parabolic fit and filtered out the lightcurves

where the fit was unsuccessful using the χ2-criterion. Additionally, we selected the samples where the peak amplitude

exceeded the mean by 3σ. After this preparation, 2274 lightcurves were fed to the FCN. For the threshold PQPP > 0.95,

the FCN detected QPPs in 7% of all flare lightcurves considered. This is comparable with the QPP detection rate in

stellar flares, estimated recently by Ramsay et al. (2021).

We made our synthetic dataset and the source code available in open access via Harvard Dataverse and GitHub.

Our GitHub repository has two Jupyter notebooks to generate the dataset and train the FCN with it. It also contains

the Streamlit browser application, developed by us, which allows one to run the pre-trained FCN and use it for QPP

detection in future studies. We also provided a detailed user guide for the installation, running, and using the developed

FCN.

We used the FCN time series classifier, based on the architecture proposed in (Wang et al. 2017), as the first step

in applying Deep Learning techniques for the QPP detection task. As for the next step, a more complicated network

architecture can be used including different approaches such as residual (ResNet) and recurrent (RNN) networks.

However, this approach demands powerful hardware and may limit the inference speed that can be crucial for large-

scale surveys. Another possible development is data engineering. The additional features may be used as the new FCN

input channels. For example, the autocorrelation function can be calculated for the detrended lightcurve and passed to

the FCN as an additional channel. Finally, the raw lightcurves can be transformed into 2D spectra (via, for example,

the wavelet transform) and then examined by the image recognition techniques for the presence of characteristic QPP

signatures.

http://localhost:8501
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Figure 10. The graphical interface of the browser application for the FCN-based QPP detection in the flare lightcurves data.
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Software: NumPy, a Python packge for fundamental scientific computing (Harris et al. 2020); SciPy, a Python
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Kepler and TESS data analysis (Lightkurve Collaboration et al. 2018); Astopy, a Python package for astrophysical

purposes (Astropy Collaboration et al. 2013, 2018, 2022); PyTorch Lightning, the deep learning framework; Streamlit,

a Python library for deploying ML projects.
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Table 3. KIC and BJD flare peak times for 159 flares with PQPP ≥ 0.95 found in the flare catalogue (Balona 2015).

KIC BJD KIC BJD KIC BJD KIC BJD

11560431 2456115.361 10160534 2455064.852 11560431 2456173.104 10355856 2455387.912

3430868 2455038.978 5357275 2455119.591 11551430 2455013.017 11551430 2455029.862

3239945 2456170.505 5733906 2455099.532 4671547 2455073.743 11560431 2456056.445

11560431 2456072.751 11610797 2454981.631 11551430 2456131.799 11665620 2455806.894

11548140 2455386.295 11551692 2456170.504 5475645 2456330.43 6106152 2455024.179

5357275 2455106.976 3441906 2455952.2 9349698 2456354.714 11709006 2455408.873

9895004 2455437.151 11551692 2456042.642 10459987 2456179.644 8429280 2455004.753

5557932 2455038.978 11189959 2455114.891 11560431 2456110.758 11560431 2456197.291

6106152 2455018.608 9652680 2455090.13 1161345 2456170.506 10063343 2455151.39

11560431 2456172.309 11231334 2455491.728 5108214 2455837.489 4273689 2455249.467

11560431 2455020.996 11709006 2454971.877 4758595 2456233.845 11551430 2455024.522

6548447 2455323.093 7940546 2455768.88 11551430 2456194.753 3239945 2456156.116

4543412 2455163.976 11560431 2456117.885 4831454 2455187.025 9761199 2455799.706

8651471 2455845.632 7339343 2455005.364 7206837 2456084.741 11551430 2456279.936

11709006 2455430.144 9641031 2456219.273 11560431 2456064.381 8429280 2455032.148

8429280 2455006.133 11560447 2455055.708 11709006 2454971.707 5609753 2456399.539

11560431 2455013.574 10528093 2456262.771 4758595 2456226.538 7841024 2454968.701

11548140 2455486.206 9821078 2455623.573 11560431 2455023.444 12644769 2456170.501

11551692 2456289.977 9641031 2455022.582 11548140 2455488.308 11665620 2455791.997

2300039 2455773.901 2162635 2455806.895 12156549 2455346.612 11560431 2456057.61

12156549 2455342.383 9641031 2456157.95 7940546 2455779.026 11560431 2456165.778

4758595 2456210.581 12156549 2455376.074 11551430 2456245.555 2302548 2456170.505

7940546 2455871.277 4568729 2455056.284 9705459 2456371.072 9641031 2456109.318

1025986 2455133.355 11560431 2456117.449 9655129 2456148.63 9655129 2456112.973

4671547 2455087.968 11560431 2456150.678 11709006 2454969.451 11551430 2456217.422

11560431 2456184.967 5557932 2455039.036 4671547 2455074.027 12156549 2455347.197

5522786 2456011.854 11560431 2456070.227 12102573 2455072.339 11560431 2455003.17

4939265 2456281.794 4671547 2455090.038 6286925 2455038.42 9641031 2456100.371

2300039 2455790.849 3430868 2455039.036 7765135 2455072.194 11551430 2456170.457

1161345 2455806.895 5522786 2455871.3 11560431 2456194.578 12156549 2455318.629

11551430 2456296.8 1871056 2456156.115 6106152 2455013.524 7692454 2456266.216

8429280 2455032.246 10355856 2454982.87 9821078 2455705.652 7940546 2456094.427

9833666 2456394.052 6442183 2455860.26 11231334 2456178.25 6205460 2455334.886

11560431 2455010.158 7940546 2456259.122 12102573 2455079.331 11551430 2456235.537

7206837 2455806.894 11560431 2456186.81 11560431 2456170.503 11560431 2456114.382

12156549 2455086.645 9833666 2456423.294 11560431 2456156.548 7940546 2455048.776

11560431 2456112.473 11560431 2456142.847 7940546 2455503.213 6106152 2455033.037

3128488 2454964.786 12156549 2455067.352 4273689 2455263.655 11709006 2454966.828

11231334 2455435.206 12156549 2455374.593 11548140 2455453.673 11551430 2456278.089

12418816 2455257.868 11560431 2456132.526 4758595 2456219.141

A. KEPLER FLARE WITH QPP
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